
BellTest and CHSH experiments with more than two settings

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 7411

(http://iopscience.iop.org/0305-4470/36/26/312)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 7411–7423 PII: S0305-4470(03)61445-9

BellTest and CHSH experiments with more than two
settings

R M Basoalto and I C Percival

Department of Physics, Queen Mary University of London, Mile End Road, London E1 4NS, UK

Received 27 March 2003, in final form 13 May 2003
Published 18 June 2003
Online at stacks.iop.org/JPhysA/36/7411

Abstract
Strong nonlocality allows signals faster than light. Weak nonlocality is a
statistical property of classical events for which there is no realistic local
theory. This requires the violation of at least one general Bell inequality.
The theory of ideal quantum measurements predicts weak nonlocality but not
strong nonlocality. Bell experiment here refers to any experiment designed
to demonstrate weak nonlocality. BellTest is a computer program generally
available on the Web to help planning and analysis of such Bell experiments.
In Mode 1 it obtains general Bell inequalities. In Mode 2 it tests for their
violation. We describe its use, with some new results for illustration.

PACS number: 03.65.Ud

1. Introduction

Do we live in a completely local world, or is there some kind of nonlocality? There is
no evidence for the strong nonlocality that would allow signals faster than the velocity of
light. But there is evidence in favour of a kind of weak nonlocality which excludes any local
hidden variable theory of quantum measurement. The experimental evidence is not conclusive,
because every experimental test has at least one loophole.

In the 1935 paper of Einstein, Podolsky and Rosen (EPR) [1], the problems of locality
are implicit, giving the impression that they are matters of interpretation, which could not be
tested by experiment. With Bell’s original inequality [2], weak nonlocality and the existence
of local hidden variables became a matter of experiment, apart from the limitations due to the
difference between ideal and real quantum measurements. These limitations were overcome,
in principle, for a particular type of experiment by Clauser, Horne, Shimony and Holt [3].

Wigner in 1970 [4] expressed the Bell inequalities in terms of conditional probabilities
and suggested that all values of the hidden variables that gave the same output for every setting
should be considered together. This led to much recent work including Froissart’s [5] beautiful
representation of the general inequalities as facets of polytopes, or many dimensional polyhedra
[6, 7], and the use of transfer functions [8, 9] as in this paper. Conditional probabilities are
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better than expectation values because they are easier to generalize, and because they are
obtained more directly from experiment.

Experiments of the Bell type, or simply Bell experiments, are designed to demonstrate
weak nonlocality through the violation of some type of Bell inequality. None has yet done
so without at least one loophole [10]. For example the experiment of Rowe et al [11] using
entangled ions fails to overcome the locality or lightcone loophole by a factor of at least 1010,
and the entangled photon experiment of Weihs et al [12] fails for the detection loophole by a
factor of about 17. Until an experiment succeeds in breaking a Bell inequality without any
loophole, the possibility that we live in a completely local world cannot be ruled out [13].

There is an infinite number of possible Bell experiments, with entangled photons, ions or
atoms, with entangled quantum systems of 2, 3 or more particles, and with different numbers
of detectors with different efficiencies. For every one of them there is a specific set of Bell
inequalities; the violation of any one of these inequalities without loopholes demonstrates
weak nonlocality. If they are all satisfied, there is no such demonstration. These general Bell
inequalities depend only on conditional probabilities of recorded classical events. There may
be very many inequalities.

The computer program BellTest described here is freely available on the Web1. Given
enough time, it generates all the Bell inequalities using Wigner’s version of the inequalities
[4]. In a second mode, which is usually much faster, it determines whether a given set of
conditional probabilities satisfies all the inequalities or breaks at least one of them [14].

2. Bell experiments, inputs and outputs

There is a strong contrast between experiments designed to determine the properties of atoms,
nuclei or particles on the one hand, and Bell experiments on the other. Properties such as
spectra, lifetimes or cross-sections are quantum properties, to be compared either with field
theory or with a solution of Schrödinger’s equation. The classical apparatus is no more nor
less than a means to this end. By contrast Bell experiments are designed to determine the
probabilities of classical events, to be compared with the general theory of Bell inequalities,
which is a purely classical theory of these events. The quantum system is no more nor less
than a means to this end. The distinction is often ignored when interpreting the results of Bell
experiments, leading to confusion about loopholes. The classical events are:

1. The classical inputs i that determine which property of the quantum system is to be
measured. An example is the orientation of a polarizer.

2. The classical outputs j , which are the classical states of the data records.

Because the inequalities are between probabilities of classical events, the raw data should
be used with sufficient statistics to estimate the conditional probabilities in the Bell inequalities,
without any additional assumptions, post-selection or other tampering with these data. The
conditional probabilities for the raw data are the results of the experiment. That is why the
distinction between Bell experiments and other quantum experiments is so important. For
the latter, processing of the data using the known physical properties of the apparatus is not
only allowed, it is usually essential.

If the raw data are used and the spacetime conditions on the inputs and outputs are satisfied
[8, 9], then the criteria for analysing the data and for improvement and eventual success of a
Bell experiment with no loopholes are clear.

The system consists of the entire classical apparatus together with an entangled quantum
system. The original Bell experiment with photons and the CHSH experiment contain two
1 BellTest is freely available from http://www.strings.ph.qmw.ac.uk/QI/main.htm.
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similar classical subsystems, A (Alice) and B (Bob), which are separated from one another at
a minimum distance L. For a given run of the experiment, Alice sets the angle of a polarizing
beam splitter at an angle ϕA and Bob sets his at an angle ϕB at the same time in the laboratory
frame. These settings are the inputs. For the original Bell there are three possible settings for
each and for CHSH there are two. In section 7 we consider more settings. For different runs
the angles are chosen randomly from the possible settings. In an ideal CHSH experiment, it
is assumed that Alice always detects one photon of an entangled photon pair, and Bob always
detects the other, and that they are able to measure the states of polarization of each. The
recording of these polarization states by Alice and Bob is the output, and it can be assumed
that they occur at the same time. There are two possible outputs for Alice and two for Bob,
making four in all. This assumption is not realistic for a laboratory experiment, since there
is always a chance that one or both of the photons will not be detected. The CHSH theory
takes account of this. There are only two detectors, one for Alice and one for Bob, that are
supposed to detect only the parallel photons, and do not always succeed in doing that. Again
there are only two possible outputs for Alice and for Bob, but these outputs do not correspond
to the parallel and perpendicular polarization, as they would if the polarizers and detectors
were perfect.

In order to test for nonlocality, it must not be possible to send a signal from Alice to
Bob, or vice versa, during the experiment, so the maximum time T between the setting and
recording process on both sides must satisfy the relativistic locality or lightcone condition
T c < L. Failure to do so results in the lightcone loophole, which is present for all Bell
experiments to date that do not use entangled photons.

3. Transition and transfer pictures

We briefly introduce the general theory of input–output systems as it applies to deterministic
systems and then to stochastic systems, such as Bell experiments. It is equivalent to the
approach of Wigner [4] and Froissart [5]. A more detailed account is given in [8, 9].

Consider an input–output system composed from two independent input–output
subsystems A and B. The system has input i = (iA, iB) and output j = (jA, jB), where
iA(B) and jA(B) are the inputs and outputs of subsystem A (or B). Because we treat real
experiments, we use CHSH as an example. Since there are two settings at A and B, there are
four possible inputs i. Similarly, there are four possible outputs j , in which Alice’s or Bob’s
detector does or does not fire.

For a given run with the input i there is a corresponding value of the output j . The relation
between them is the transition i → j . This is the transition picture. For the CHSH system
there are 16 possible transitions. If A and B are so similar that they can be interchanged
without changing the experiment, there is a symmetry which makes some of the transitions
equivalent. Such symmetries help in the derivation of inequalities, but we do not consider
them further in this paper.

In CHSH, the relation between the inputs and outputs is stochastic. But it is helpful to
consider a deterministic system with the same inputs and outputs, which are linked classically
so that the output is uniquely determined by the input. There is a unique j for each i, and the
relation between them can be expressed as a transfer function

F(iA, iB) = (jA, jB). (1)

This is the transfer picture. For CHSH the number of possible transfer functions is 256. There
are local and nonlocal transfer functions. If jB is independent of iA, and jA is independent of iB ,
then the transfer function is local, and F can be expressed in terms of the transfer function
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for A and the transfer function for B. Otherwise it is nonlocal. A deterministic system with
a nonlocal transfer function could be used to send a signal faster than the velocity of light.
None has been found. For CHSH there are only 16 local transfer functions.

For stochastic systems the dynamics is defined by the probabilities of the transitions

Pr(i → j) = Pr(j |i) (2)

that is, the conditional probability of the output j given the input i. Because there is always
some output, these sum to unity for every i:∑

j

Pr(j |i) = 1 where 0 � Pr(j |i) � 1. (3)

Systems for which all the transition probabilities are either zero or one are deterministic.
In the transfer picture, the dynamics is defined by the probability that the system behaves

like a deterministic system with transfer function F, for every possible F. These are transfer
function probabilities, or transfer probabilities, Pr(F ), which sum to unity. The conditional
probability for finding the output j , when the input is i, is then given in terms of the transfer
probabilities as

Pr(j |i) =
∑
F

Pr(F )δ(j, F (i)) where δ(j, F (i)) =
{

0 if F(i) �= j

1 if F(i) = j.
(4)

This is the key equation, and gives the transition probabilities in terms of the transfer
probabilities. The space of transfer probabilities is generally of much bigger dimension
than the space of conditional probabilities. As a result, the key equation cannot usually be
inverted to obtain the transfer probabilities in terms of the transition probabilities. However,
inequalities for the transfer probabilities can be translated into equivalent inequalities for the
transition probabilities using linear programming methods. Bell inequalities are an example.

In an experiment we measure the transition probabilities, but properties such as ‘locality’
are defined in terms of transfer probabilities. For given transition probabilities Pr(j |i),
the probabilities Pr(F ) must satisfy this key equation, together with the inequalities and
normalization of the transfer probabilities, which are

0 � Pr(F ) � 1 and
∑
F

Pr(F ) = 1. (5)

For locality, only local transfer functions should be included in the sums of (4) and (5).
Using equation (4), the inequalities (5) can be translated into inequalities for the

conditional probabilities Pr(j |i), which include all the Bell inequalities for the system. This
is a general result which applies to experiments with any number of inputs and outputs.
If, for measured Pr(j |i), a Bell inequality is violated, then at least one nonlocal transfer
probability must be nonzero. Nevertheless, remarkably, according to quantum theory with
ideal measurements, there are some systems which are nonlocal in this sense, and still cannot
be used to send signals faster than the velocity of light. This is weak nonlocality, and forbids
local hidden variable theories. It is a predicted property of some classical input and output
events that are linked by entangled quantum systems. It has never been demonstrated, without
loopholes, in a real experiment. This formulation, when applied to simple ideal experiments,
is equivalent to the usual one in terms of hidden variables, but note that the Bell inequalities
came from the classical spacetime relations of the inputs and the outputs, and the formulation
needs no quantum mechanics at all. The role of the quantum system and quantum dynamics is
to provide conditional probabilities that violate the inequalities, but it is not required in order
to obtain the inequalities.
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A similar formulation has been generalized to experiments with arbitrary numbers of
inputs and outputs and of input and output values. It can also be applied to real experiments,
that often have more values for outputs than ideal ones. An example is the non-detection
of one of the photons of a photon pair. There are large numbers of inequalities of the Bell
type, sometimes running into thousands for quite simple systems, which can be obtained
systematically on a computer. However, for given experimental conditions, only one, or
possibly a few, of these are relevant.

The classical events are the settings and the measurement outcomes. Weak nonlocality
has not yet been demonstrated in real laboratory experiments, without further assumptions, or
loopholes [10]. An experiment of the Bell type can be an effective test of weak nonlocality
only if the runs are truly independent, the spacetime conditions are satisfied for all settings and
measurement outcomes, and the statistics are adequate to provide sufficiently accurate values
of the probabilities of the outcomes, given the settings.

4. Experiments without loopholes

There are inequalities for any number of apparatus settings and measurement outcomes, and
even for any number of spatially separated subsystems (see for example [5, 15–20]). But
as the number of settings, outcomes and subsystems increases, the number of inequalities
increases very rapidly. For given experimental or theoretical transition probabilities, either all
the inequalities are satisfied, in which case there is no demonstration of weak nonlocality, or
at least one is violated, in which there is weak nonlocality.

Given these conditions, the transition probabilities for all the possible measurement
outcomes have to be estimated. In planning an experiment this is done by using the properties
of the apparatus and quantum dynamics to obtain the probabilities for an ideal experiment, and
then correcting this with the estimated losses and sources of noise. This obviously involves
trial and error.

No such estimates should be used for the analysis of an experiment of the Bell type,
because the only reliable method of telling whether an experiment has demonstrated weak
nonlocality is independent of any such estimates. Since real experiments often have more
measurement outcomes than ideal experiments, the corresponding Bell inequalities are
generally different.

From now on we suppose there are just two subsystems, as for CHSH, and that the
lightcone condition is satisfied, and the number of settings is known. The number of detectors
used on each side of the setup gives the the number of experimental outcomes.

5. Example

Experiments of the Bell type involve two or more entangled quantum systems, such as photons
(e.g. [12, 21, 22]), or ions [11]. Consider the photon Bell experiment of Weihs et al [12] in
which the locality loophole was closed. In this experiment, polarization entangled photon
pairs, produced in a degenerate type-II parametric down-conversion process, were coupled
to optical fibres that sent the photons to subsystems A and B which satisfied the lightcone
condition. A and B each have one input and one output, and taken together form the system
A + B as shown in figure 1. Note that the state of the down converter which produces the
entangled photons is the same for each run, and so does not appear in this analysis.

A + B has classical input i = (iA, iB) and classical output j = (jA, jB). For the
experiment of Weihs et al the outputs are the polarization measurement outcomes, and the
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Figure 1. The above figure illustrates a black box system representing a Bell type experiment.

angle of the polarizer is the input. According to the classical (non-quantum) theory of special
relativity, there can be no signalling between A and B, and so, only local transfer functions of
the form

F = (FA, FB) where

{
FA(iAiB) = FA(iA) = jA

FB(iAiB) = FB(iB) = jB

(6)

have nonzero probability Pr(F ). Locality is equivalent to this condition, so the sum (4) is
restricted to these terms. According to quantum dynamics and the quantum theory of ideal
measurements, there are systems A and B (which are connected via an entangled quantum
system) that violate this condition. At least one nonlocal transfer function may have to have
nonzero probability. This is weak nonlocality [9], which is equivalent to Bell’s original
definition [2] in terms of hidden variables. Unfortunately, real experiments are not ideal,
there are many possible loopholes and it is very difficult to demonstrate weak nonlocality in
practice [10].

6. BellTest

For the analysis of Bell type experiments we make use of a computer program called BellTest
[15], which is a well-tested and freely available program. It can be used in one of two possible
modes:

Mode 1. Find the set of linear inequalities which put classical bounds on linear
combinations of conditional probabilities (2).
Mode 2. Given all the conditional probabilities, perhaps obtained from the raw
experimental data or from quantum mechanical predictions, test for weak nonlocality.

The program implements a simple connection between the general theory of input–output
systems [8, 9] and the geometry of convex polytopes [6, 7]. A convex polytope, or simply
polytope, is a bounded polyhedron of arbitrary dimension, described either in terms of a system
of linear equalities and inequalities or by specifying every vertex. Both representations are
equivalent and one can transform from one to the other. The polygons and the platonic solids
are examples of two- and three-dimensional polytopes. The details underlying the relation
between input–output systems and polytopes are not necessary for the results presented here
and an account is given in a separate paper [23].

To use BellTest, the Bell experiment must first be described in terms of inputs and outputs.
This amounts to specifying the total number of subsystems along with the number of inputs
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and outputs per subsystem. To test weak nonlocality, the inputs and outputs of every subsystem
must be space-like separated from the inputs and outputs of every other subsystem.

For a given Bell experiment, the corresponding set of conditional Pr(j |i) probabilities
taken together define a point in a space with Cartesian coordinates, where i and j are strings
of inputs and outputs over all input and output ports. Moreover, equation (4), relating the
transition and transfer pictures, and constraints (3) and (5), for all inputs and outputs, define a
subspace of allowed transition probabilities, the Bell polytope, whose vertices represent local
transfer functions F with the qualification Pr(F ) �= 0. These are determined by BellTest and
Mode 1 is nothing more than the facet enumeration problem, where, given all the vertices, one
is interested in obtaining the set of linear inequalities and equalities that define the same convex
polytope. The facet enumeration problem has attracted much attention from computational
geometers and as a result an extensive library of computational tools is readily available over
the Web. We make use of the software called Polyhedron Representation Transformation
Algorithm [24] to list all the Bell inequalities for a given set of local transfer functions with
non-zero probability.

In general, the number of local transfer functions grows exponentially, and what is more
the number of inequalities that must be satisfied also grows in an exponential manner. In
addition, even for small numbers of subsystems, inputs and outputs, the time taken to run
BellTest in Mode 1 can be large. To this end, given all the transition probabilities, checking
every inequality and equality for a violation is not the most efficient test for weak nonlocality
as Mode 1 must be carried out first. However, at least one nonlocal transfer function with
non-zero probability is required to satisfy (4) for all inputs and outputs whenever an inequality
or equality is violated. In Mode 2, BellTest produces a Mathematica notebook which contains
a linear program. However, we are not interested in obtaining the maximum or minimum of
a linear expression with respect to a set of constraints, but rather, we only want to know if
the program has a feasible solution. The variable quantities are the local transfer probabilities
Pr(F ), subject to equalities (4) for all inputs and outputs. We make use of Mathematica’s
linear programming package for solving the feasibility problem2.

Pitowsky and Svozil [25] and Filipp and Svozil [26] have produced programs which
operate in a manner similar to that of BellTest in Mode 1. Kaszlikowski and Zukowski [29]
have also produced a program which operates similarly to BellTest in Mode 2.

7. General CHSH inequalities

The experiment proposed by CHSH involves two settings of the polarizers at either site;
that is, two inputs iA at A and two inputs iB at B. Generalizations of the CHSH experiment
to experiments using more than two inputs either at A or at B for two entangled two-state
systems have been considered by other authors and a number of generalized CHSH inequalities
have appeared in the literature [17, 27–34]. We have also considered such experiments. In
particular, we have applied BellTest to two types of generalized CHSH experiments with N ′(i)
inputs at either end.

E1. Experiments that make use of 2N ′(i) out of the N ′(i)2 possible inputs i = (iAiB).
E2. Experiments that use all N ′(i)2 experimental inputs i = (iAiB).

However, due to the rapid growth in the computational time taken to run BellTest in either
mode as the number of inputs increases, we have only considered cases involving small
N ′(i). Experiments of type E1 were first considered in [28] and later in [30, 31], and the

2 Mathematica is a commercial computational tool. For more information please go to http://www.wolfram.com/
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corresponding set of Bell inequalities were called the chained Bell inequalities, which are
obtained by taking linear combinations of CHSH inequalities for appropriate pairs of inputs.
In [34], Gisin presented a generalized CHSH inequality for experiments of type E2, for which
as N ′(i) increases the ratio of violation approaches the limit 4/π . However, Peres [17] has
conjectured that for this class of experiments it is sufficient to consider CHSH inequalities
for pairs of inputs at A and B. The computational results obtained by Kaszlikowski et al (see
chapter 8 of [27]) show, for the cases 2 � N ′(i) � 10, that the critical visibility required to
satisfy a local hidden variable model reproducing the quantum predictions cannot be greater
than 1/

√
2, which is the critical visibility to violate the CHSH inequality. Their computational

results clearly bolster the conjecture put forward by Peres.
First we used BellTest in Mode 1 to obtain, for specific cases, all the inequalities that

must be satisfied by the conditional probabilities Pr(jAjB |iAiB) obtained for both types of
generalized CHSH experiments. For experiments of type E1, we have obtained all the
inequalities for N ′(i) = 3, 4, 5, and for experiments of type E2, we have obtained all the
inequalities for N ′(i) = 2, 3, 4. As the number of inequalities increases rapidly with respect
to the number of inputs at either end (this is especially so for experiments of type E2), it is
not possible to list them all here, and consequently, we only give examples of the different
types of inequalities. The full set can be viewed on the website. For cases 2 � N ′(i) � 7 we
have also applied BellTest in Mode 2 to experiments of type 2, involving entangled pairs of
two-state quantum systems in the well-known mixed state

ρ = λρnoise + (1 − λ)ρmax (7)

where

ρnoise =




1/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 1/4


 ρmax =




0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0


 (8)

and 0 � λ � 1 describes the fraction of noise present in ρ. For simplicity, throughout our
analysis, we have assumed ideal preparation and measurement. Therefore, there are two
possible output events at A and B for any given run of experiments E1 and E2. We denote
these + and −, which represent detection and non-detection of a photon, respectively. There
are four possible outputs j = (jAjB) ∈ {(+ +), (+ −), (− +), (−−)} given the input event
i = (iAiB). To keep down the time taken to run BellTest in either mode, we have made use of
the transfer probability symmetries. For Mode 1, all the inequalities found will be expressions
involving the conditional probability measures Pr(+ + |iAiB) only. However, the inequalities
can be expressed in terms of expectations E(iAiB) through the relation

E(iAiB) = 4Pr(+ + |iAiB) − 1 (9)

where we have made use of the symmetries:

Pr(+ + |iAiB) = Pr(− − |iAiB) Pr(+ − |iAiB) = Pr(− + |iAiB) (10)

and constraint (3).
The smallest chained CHSH experiment involves N ′(i) = 3 inputs at both A and B.

BellTest labels the inputs and outputs in terms of integers, and for this case the inputs iA and iB
can be any value from the integer set {0, 1, 2}. Similarly, the outputs jA and jB can be any value
from the set {0, 1}, and we may take the output value 0 to represent − and 1 to represent +.
The set of all possible inputs i = (iAiB) is therefore

0 0 0 1 0 2
1 0 1 1 1 2
2 0 2 1 2 2.

(11)
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However, for this chained CHSH experiment only six inputs are used, namely

0 0, 0 2, 1 0, 1 1, 2 1, 2 2. (12)

For this chained CHSH experiment BellTest finds that there are 44 inequalities that must be
satisfied by the conditional probabilities. The inequalities found were of three different types:

Pr(+ + |iAiB) � 0 2Pr(+ + |iAiB) � 1 for all inputs iAiB (13)

+Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

−Pr(+ + |a3b2) − Pr(+ + |a3b3) − Pr(+ + |a1b3) � 1
(14)

0 � +Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

+Pr(+ + |a3b2) + Pr(+ + |a3b3) − Pr(+ + |a1b3) � 2
(15)

where ak and bl represent the different settings of A and B. Inequalities (13) are trivial.
Inequalities (15) are chained Bell inequalities which, by using relation (9), can be written
in their standard form [31]. However inequalities (14) appear to be new. For appropriate
settings, the conditional probabilities as predicted by quantum mechanics can be shown to
violate (14) and (15). In a similar manner, we also found all the inequalities for chained CHSH
experiments with N ′(i) = 4 and 5. For N ′(i) = 4, BellTest obtained non-trivial inequalities
of the form

+Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

−Pr(+ + |a3b2) − Pr(+ + |a3b3) − Pr(+ + |a4b3)

− Pr(+ + |a4b4) − Pr(+ + |a1b4) � 1
(16)

+Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

+Pr(+ + |a3b2) + Pr(+ + |a3b3) − Pr(+ + |a4b3)

− Pr(+ + |a4b4) − Pr(+ + |a1b4) � 2
(17)

0 � + Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

+ Pr(+ + |a3b2) + Pr(+ + |a3b3) + Pr(+ + |a4b3)

+ Pr(+ + |a4b4) − Pr(+ + |a1b4) � 3.

(18)

For N ′(i) = 5, the following set of non-trivial inequality types were obtained:

+Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

−Pr(+ + |a3b2) − Pr(+ + |a3b3) − Pr(+ + |a4b3)

−Pr(+ + |a4b4) − Pr(+ + |a5b4) − Pr(+ + |a5b5)

− Pr(+ + |a5b4) � 1

(19)

+Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

+Pr(+ + |a3b2) + Pr(+ + |a3b3) − Pr(+ + |a4b3)

−Pr(+ + |a4b4) − Pr(+ + |a5b4) − Pr(+ + |a5b5)

− Pr(+ + |a5b4) � 2

(20)

+Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

+Pr(+ + |a3b2) + Pr(+ + |a3b3) + Pr(+ + |a4b3)

+Pr(+ + |a4b4) − Pr(+ + |a5b4) − Pr(+ + |a5b5)

− Pr(+ + |a5b4) � 3

(21)

0 � +Pr(+ + |a1b1) + Pr(+ + |a2b1) + Pr(+ + |a2b2)

+Pr(+ + |a3b2) + Pr(+ + |a3b3) + Pr(+ + |a4b3)

+Pr(+ + |a4b4) + Pr(+ + |a5b4) + Pr(+ + |a5b5)

− Pr(+ + |a5b4) � 4.

(22)
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Inequalities (18) and (22) are chained Bell inequalities for N ′(i) = 4 and 5, respectively. The
other inequalities, which like inequalities (14) appear to be new, can be violated for appropriate
choices of inputs.

Let us now consider experiments of the type E2. For N ′(i) = 2, BellTest obtains only the
trivial inequalities of the form (13) and the CHSH inequalities:

0 � Pr(+ + |a1b1) + Pr(+ + |a1b2) + Pr(+ + |a2b1) − Pr(+ + |a2b2) � 1. (23)

For N ′(i) = 3 the non-trivial inequalities are all of the CHSH type, and could have been
obtained without BellTest by selecting the inputs in pairs from A and from B and writing
the CHSH inequalities for these pairs. There is no need for the computer program, except
to ensure that there are no other inequalities. A natural extrapolation might suggest that the
same is true for all values of N ′(i), but, surprisingly, this is not so. For N ′(i) = 4, there
are inequalities of a completely new type. BellTest found the following set of non-trivial and
non-CHSH type inequalities:

−Pr(+ + |a1b1) − Pr(+ + |a1b2) − Pr(+ + |a1b3) − Pr(+ + |a1b4)

−Pr(+ + |a2b1) − Pr(+ + |a2b2) − Pr(+ + |a2b3) + Pr(+ + |a2b4)

−Pr(+ + |a3b1) − Pr(+ + |a3b2) + 2Pr(+ + |a3b3)− Pr(+ + |a4b1)

+ Pr(+ + |a4b2) � 0

(24)

−2Pr(+ + |a1b1) − Pr(+ + |a1b2) − Pr(+ + |a1b3) − Pr(+ + |a2b1)

+Pr(+ + |a2b2) + Pr(+ + |a2b3) − Pr(+ + |a2b4) − Pr(+ + |a3b2)

+Pr(+ + |a3b3) + Pr(+ + |a4b1) − Pr(+ + |a4b2) − Pr(+ + |a4b3)

− Pr(+ + |a4b4) � 0

(25)

−2Pr(+ + |a1b1) − 2Pr(+ + |a1b2) − Pr(+ + |a1b3) − Pr(+ + |a1b4)

−Pr(+ + |a2b1) + Pr(+ + |a2b2) − 2Pr(+ + |a2b3) + 2Pr(+ + |a2b4)

−Pr(+ + |a3b1) + 2Pr(+ + |a3b2) − Pr(+ + |a3b3) − 2Pr(+ + |a3b4)

+2Pr(+ + |a4b1) − Pr(+ + |a4b2) − 2Pr(+ + |a4b3) − Pr(+ + |a4b1) � 0

(26)

−2Pr(+ + |a1b1) − 2Pr(+ + |a1b2) − Pr(+ + |a1b3) + Pr(+ + |a1b4)

−2Pr(+ + |a2b1) + Pr(+ + |a2b2) + Pr(+ + |a2b3) − 2Pr(+ + |a2b4)

−Pr(+ + |a3b1) + 2Pr(+ + |a3b2) − 2Pr(+ + |a3b3) + Pr(+ + |a3b4)

+Pr(+ + |a4b1) − Pr(+ + |a4b2) − 2Pr(+ + |a4b1) − 2Pr(+ + |a4b1) � 0

(27)

−Pr(+ + |a1b1) − Pr(+ + |a1b2) − Pr(+ + |a1b3) − Pr(+ + |a1b4)

−Pr(+ + |a2b1) − Pr(+ + |a2b2) + 2Pr(+ + |a2b4) − Pr(+ + |a3b1)

+Pr(+ + |a3b2) + Pr(+ + |a4b1) + Pr(+ + |a4b2) − Pr(+ + |a4b3)

+Pr(+ + |a4b4) � 1

(28)

−2Pr(+ + |a1b1) − Pr(+ + |a1b2) − Pr(+ + |a1b1) − Pr(+ + |a2b1)

+Pr(+ + |a2b2) + Pr(+ + |a2b3) − Pr(+ + |a2b4) − Pr(+ + |a3b1)

+Pr(+ + |a3b2) + Pr(+ + |a3b3) + Pr(+ + |a3b4) − Pr(+ + |a4b2)

+Pr(+ + |a4b3) � 1

(29)

−2Pr(+ + |a1b1) − 2Pr(+ + |a1b2) − Pr(+ + |a1b3) − Pr(+ + |a1b4)

−2Pr(+ + |a2b1) + Pr(+ + |a2b2) + Pr(+ + |a2b3) + 2Pr(+ + |a2b4)

−Pr(+ + |a3b1) + Pr(+ + |a3b2) + 2Pr(+ + |a3b3) − 2Pr(+ + |a3b4)

−Pr(+ + |a4b1) + 2Pr(+ + |a4b2) − 2Pr(+ + |a4b3) − Pr(+ + |a4b4) � 1

(30)
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−Pr(+ + |a1b1) − Pr(+ + |a1b2) − Pr(+ + |a1b3) + Pr(+ + |a1b4)

−Pr(+ + |a2b1) − Pr(+ + |a2b2) + Pr(+ + |a2b3) + Pr(+ + |a2b4)

−Pr(+ + |a3b1) + Pr(+ + |a3b2) + Pr(+ + |a4b1) + Pr(+ + |a4b2)

+2Pr(+ + |a4b4) � 2

(31)

−2Pr(+ + |a1b1) − Pr(+ + |a1b2) + Pr(+ + |a1b4) − Pr(+ + |a2b1)

+Pr(+ + |a2b2) + Pr(+ + |a2b3) − Pr(+ + |a2b4) + Pr(+ + |a3b2)

+Pr(+ + |a3b4) + Pr(+ + |a4b1) − Pr(+ + |a4b2) + Pr(+ + |a4b3)

+Pr(+ + |a4b4) � 2

(32)

−2Pr(+ + |a1b1) − 2Pr(+ + |a1b2) − Pr(+ + |a1b3) − Pr(+ + |a1b4)

−2Pr(+ + |a2b1) + Pr(+ + |a2b2) + Pr(+ + |a2b3) + 2Pr(+ + |a2b4)

−Pr(+ + |a3b1) + Pr(+ + |a3b2) + 2Pr(+ + |a3b3) − 2Pr(+ + |a3b4)

+Pr(+ + |a4b1) − 2Pr(+ + |a4b2) + 2Pr(+ + |a4b3) + Pr(+ + |a4b4) � 2

(33)

−Pr(+ + |a1b1) − Pr(+ + |a1b2) + 2Pr(+ + |a1b4) − Pr(+ + |a2b1)

+Pr(+ + |a2b2) + Pr(+ + |a3b1) + Pr(+ + |a3b2) − Pr(+ + |a3b3)

+Pr(+ + |a3b4) + Pr(+ + |a4b1) + Pr(+ + |a4b2) + Pr(+ + |a4b3)

+Pr(+ + |a4b4) � 3

(34)

−2Pr(+ + |a1b1) + Pr(+ + |a1b3) + Pr(+ + |a1b4) − Pr(+ + |a2b3)

+Pr(+ + |a2b4) + Pr(+ + |a3b1) − Pr(+ + |a3b2) + Pr(+ + |a3b3)

+Pr(+ + |a3b4) + Pr(+ + |a4b1) + Pr(+ + |a4b2) + Pr(+ + |a4b3)

+Pr(+ + |a4b4) � 3

(35)

−2Pr(+ + |a1b1) − 2Pr(+ + |a1b2) − Pr(+ + |a1b3) + Pr(+ + |a1b4)

−2Pr(+ + |a2b1) + Pr(+ + |a2b2) + 2Pr(+ + |a2b3) − Pr(+ + |a2b4)

−Pr(+ + |a3b1) + 2Pr(+ + |a3b2) − Pr(+ + |a3b3) + 2Pr(+ + |a3b4)

+Pr(+ + |a4b1) − Pr(+ + |a4b2) + 2Pr(+ + |a4b3) + 2Pr(+ + |a4b4) � 3

(36)

+2Pr(+ + |a1b1) + Pr(+ + |a1b2) + Pr(+ + |a1b3) + 2Pr(+ + |a1b4)

+Pr(+ + |a2b1) + Pr(+ + |a2b2) + 2Pr(+ + |a2b3) − 2Pr(+ + |a2b4)

+Pr(+ + |a3b1) + 2Pr(+ + |a3b2) − 2Pr(+ + |a3b3) − Pr(+ + |a3b4)

+2Pr(+ + |a4b1) − 2Pr(+ + |a4b2) − Pr(+ + |a4b3) − Pr(+ + |a4b4) � 4

(37)

−2Pr(+ + |a1b1) − Pr(+ + |a1b2) + Pr(+ + |a1b3) + 2Pr(+ + |a1b4)

−Pr(+ + |a2b1) + 2Pr(+ + |a2b2) + 2Pr(+ + |a2b3) − Pr(+ + |a2b4)

+Pr(+ + |a3b1) + 2Pr(+ + |a3b2) − Pr(+ + |a3b3) + 2Pr(+ + |a3b4)

+2Pr(+ + |a4b1) − Pr(+ + |a4b2) + 2Pr(+ + |a4b3) + Pr(+ + |a4b4) � 5

(38)

−2Pr(+ + |a1b1) − Pr(+ + |a1b2) + Pr(+ + |a1b3) + 2Pr(+ + |a1b4)

+Pr(+ + |a2b1) + Pr(+ + |a2b2) − 2Pr(+ + |a2b3) + 2Pr(+ + |a2b4)

+Pr(+ + |a3b1) + 2Pr(+ + |a3b2) + 2Pr(+ + |a3b3) + Pr(+ + |a3b4)

+2Pr(+ + |a4b1) − 2Pr(+ + |a4b2) + Pr(+ + |a4b3) + Pr(+ + |a4b4) � 5.

(39)

Inequalities (24) to (39), for appropriate choices of inputs, can be violated by quantum
mechanics.

For the cases studied, we have seen, for experiments of type E2, that the simplest
non-trivial inequality is always a CHSH type inequality. For N ′(i) > 2, by taking linear
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combinations of appropriate CHSH type inequalities not only can we obtain the chained Bell
inequalities (15), (18) and (22) (as expected), but also the other non-trivial inequalities. For
example, in the case N ′(i) = 3, the chained Bell inequality (15) can be obtained by adding
the following CHSH type inequalities obtained for the corresponding E2 type experiment:

Pr(+ + |a1b1) − Pr(+ + |a1b3) + Pr(+ + |a3b1) + Pr(+ + |a3b3) � 1
Pr(+ + |a2b1) + Pr(+ + |a2b2) − Pr(+ + |a3b1) + Pr(+ + |a3b2) � 1.

(40)

Likewise, inequality (14) can be obtained as a linear combination of inequalities

Pr(+ + |a1b1) − Pr(+ + |a1b3) + Pr(+ + |a2b1) + Pr(+ + |a2b3) � 1
Pr(+ + |a2b2) − Pr(+ + |a2b3) − Pr(+ + |a3b2) − Pr(+ + |a3b3) � 0.

(41)

The time taken for BellTest to find all the inequalities can, in general, be large, and
consequently the range of experiments that can be analysed in Mode 1 is small. Running
BellTest in Mode 2 does not require use of the inequalities explicitly. Instead, for all inputs
and outputs, the conditional probabilities must be provided by the user. More importantly, in
Mode 2, a greater range of experiments can be analysed. We considered experiments of type
E2 with 2 � N ′(i) � 7, and for appropriate inputs we determined the critical noise λ′ needed
to express the quantum mechanical predictions for the conditional probabilities satisfying state
(9) in terms of local transfer probabilities Pr(F ) �= 0. For each case, the feasibility test, a
Mathematica notebook generated by BellTest, was iterated for different values of λ using a
bisection method until λ = λ′ (to five decimal places). Using only those input events that
maximally violate Gisin’s generalized CHSH inequality [34], we found that the critical noise,
λ′

BT , required for the quantum predictions to satisfy equation (4) is always greater than the
critical noise, λ′

GI , required to satisfy Gisin’s inequality. Consequently, for all inputs and
outputs, and for the range of experiments considered, Gisin’s generalized CHSH inequality
gives weaker constraints on λ′ than the constraints obtained from (4). However, for other
choices of inputs, we found that for 3 � N ′(i) � 7 there is a maximum critical noise of
1 − 1/

√
2, which is the critical noise required to violate the CHSH inequality. This result

lends support to the findings of Kaszlikowski [27] and Peres’s conjecture [17].

8. Conclusion

BellTest is a generally available and well-tested computer program for obtaining inequalities
of the Bell type and for testing whether the raw data of a Bell experiment satisfy its appropriate
set of inequalities. It can be used to help in the preliminary stages of the design of experiments
of the Bell type and in analysing the final results.

We have applied BellTest to the well-known problem of CHSH experiments, for two
entangled two state quantum systems, that utilize more than two inputs (apparatus settings) at
either end of the setup. In particular, given N ′(i) inputs at A and B, we considered two such
generalizations of the CHSH experiment: experiments that use only 2N ′(i) of the possible
N ′(i)2 inputs and experiments that use all possible inputs. In Mode 1, we obtained some
old and new inequalities. In Mode 2, we considered a special example of generalized CHSH
experiments that use all N ′(i)2 inputs, and the results obtained lend support to the findings of
Peres [17] and Kaszlikowski [27].
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